
Stack Overflow Enterprise Documentation

MCP Server Architecture

An overview of the Stack Overflow MCP server architecture, authentication, security, and more.

Document generated 10/09/2025

PDF VERSION
Tags | AI | LLM | MCP Server |

This documentation is for Stack Overflow for Teams Enterprise. Free, Basic, and Business users can access their
documentation here. Find your plan.

Overview

The StackOverflow Teams MCP Server is a Model Context Protocol (MCP) server that provides access to private content
from an organization's Stack Overflow for Teams instance. It enables AI agents, coding assistants, and enterprise chat
interfaces to retrieve and interact with internal technical Q&A, best practices, team processes, onboarding documentation,
and enterprise knowledge.

High-level system architecture

OAuth 2.0 dynamic client registration & metadata discovery

The Teams MCP Server is an OAuth 2.1-compliant authorization server that supports dynamic client registration (RFC
7591), metadata discovery (RFC 8414), and the Third-Party Authorization Flow from the Model Context Protocol. It acts as
an OAuth client to Stack Overflow for Teams APIv3 and as an authorization server to MCP clients, securely mapping and
managing tokens between systems.

https://x54cwjdqkdu7-so-docs.netlify.app/pdf/teams/enterprise/!intercom/api_and_integrations/SOE_MCP_server_architecture.pdf
https://stackoverflowteams.help/en/?q=AI
https://stackoverflowteams.help/en/?q=LLM
https://stackoverflowteams.help/en/?q=MCP%20Server
https://stackoverflowteams.help/en/collections/4140893
https://stackoverflowteams.help/en/articles/9000402
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc8414
https://modelcontextprotocol.io/specification/2025-03-26/basic/authorization#third-party-authorization-flow

OAuth metadata discovery

The server provides OAuth 2.0 authorization server metadata through the /.well-known/oauth-authorization-server

endpoint, accessible via GET with CORS enabled for all origins. This endpoint returns comprehensive OAuth configuration,
including issuer, authorization and token endpoints, supported response types, grant types, and authentication methods.

Metadata response

{
 "issuer": "https://base-url",

 "authorization_endpoint": "https://base-url/mcp/authorize",
 "token_endpoint": "https://base-url/mcp/token",

 "registration_endpoint": "https://base-url/mcp/register",
 "response_types_supported": ["code"],

 "response_modes_supported": ["code"],
 "grant_types_supported": ["authorization_code"],

 "token_endpoint_auth_methods_supported": ["none"],
 "code_challenge_methods_supported": ["S256"]

}

Dynamic client registration

The server supports dynamic client registration through the /register endpoint, accessible via POST without
authentication. This public endpoint allows new OAuth clients to register dynamically by providing client name and redirect
URIs.

Client registrations are stored long-term in the database and can only be updated if the client has the registration token. This
ensures that only authorized clients can modify their registration details.

Registration request

{

 "client_name": "My MCP Client",
 "redirect_uris": [

 "https://client.example.com/callback",
 "http://localhost:3000/callback"

]
}

Registration response

{
 "client_id": "12345678-1234-1234-1234-123456789012",

 "client_name": "My MCP Client",
 "registration_client_uri": "https://base-url/registration/12345678-1234-1234-1234-123456789012",

 "registration_access_token": "reg-abcdef1234567890...",
 "grant_types": ["authorization_code"],

 "token_endpoint_auth_method": "none",
 "redirect_uris": [

 "https://client.example.com/callback",
 "http://localhost:3000/callback"

]

}

Client management endpoints

The server provides comprehensive client management through three endpoints under /registration/{client_id} . The
GET endpoint retrieves client registration details, the PUT endpoint updates client name and redirect URIs, and the DELETE
endpoint removes client registration. All operations require authentication via Registration Access Token (Bearer).

OAuth 2.0 authorization flow

The authorization flow is initiated through the /authorize endpoint via GET, requiring client_id , code_challenge
(SHA256), code_challenge_method ("S256"), redirect_uri , and an optional state parameter. The complete flow
involves client registration, metadata discovery, authorization request, server PKCE flow with APIv3, code exchange, token
request with PKCE verification, and JWT generation with public_token claim (continues below).

Detailed OAuth flow sequence

Token endpoint

The /token endpoint (POST) exchanges authorization codes for access tokens, requiring grant_type
("authorization_code"), code from callback, code_verifier , redirect_uri matching the authorization request, and

registered client_id .

Security features

The system implements PKCE with SHA256 code challenge method and cryptographically random code verifiers to prevent
authorization code interception attacks. Client validation includes strict redirect URI validation against registered URIs, client
ID validation, and CSRF protection via state parameters. Registration access tokens use the reg-{guid} prefix format and
are limited to client registration management operations.

Bearer token authentication

MCP clients must provide bearer tokens with a public_token claim, which the server extracts and uses for APIv3
authentication. The server returns 401 Unauthorized for missing or invalid tokens. The token flow involves client providing
the bearer token, server extracting the public_token claim, using it for Stack Overflow for Teams APIv3 authentication, and
forwarding all API calls with the extracted token.

If you need further support or have questions, contact your site administrator.

